Ohio State ECE—Into the Arctic

Oguz Demir

A graduate student in electrical and computer engineering (ECE) at The Ohio State University, Demir joined 600 scientists from 17 countries living on a ship frozen into the Arctic sea ice; braving ad

ONLINE

CONNECT

OSU LinkedIn | https://www.linkedin.com/company/osu
OSU Facebook | https://www.facebook.com/OhioStateU
OSU Twitter | @OhioStateU
OSU Instagram | https://www.instagram.com/ohiostateu/
OSU YouTube | https://www.youtube.com/user/OhioStateU
OSU MeetUp.com | https://www.meetup.com/OhioStateU/
OSU Facebook | https://www.facebook.com/OhioStateU

© The Ohio State University

Climate Science Research

MOSAiC: Into the Arctic

Climate mission, or MOSAiC, housed scientists and computer engineers who worked with an array of instruments to generate an unprecedented amount of data to take us to the next level. The endeavor is spearheaded by the Alfred Wegener Institute for Polar and Marine Research (AWI). The National Science Foundation funded the MOSAiC study, which is managed by the Alfred Wegener Institute.

For Demir, the memories range from laughs to somber head shakes. “We were exploring some part of the world as if no one had ever been there before. It’s a special environment. It’s beautiful. I felt lucky. It was motivating. Not many people see this aspect of the world like this,” Demir said. “It was like being on another planet or discovering a new planet. It was like discovery, a sense of discovery, a sense of wonder—a sense of wonder of the world as if no one had ever been there before.”

The Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) was established at the end of 2018. MOSAiC, meaning marvelous, miraculous, magnificent, and marine, is working well, despite major setbacks. At one point during the mission, a strong Arctic storm hit the area, bringing with it massive ice pressure and cracking the ice beneath them; literally dividing the camp into two pieces.

During autumn semester, Demir was on a research cruise with the Ohio State University team, led by ECE Professor Joel Johnson. The team was working on a device to estimate sea ice thickness and operate an ultrawide band radiometer to generate a map of the Arctic’s sea ice coverage worldwide. The instrument is working well, despite severe weather, months of darkness, and poor, cy interference, weather, as well as study soil moisture, radio frequency interference, and ice coverage worldwide. Overall, the MOSAiC project reveals how broad the major and computer engineering (ECE) at the University of Iowa.

The Multidisciplinary Drifting Observatory for the Study of Arctic Climate mission, or MOSAiC, housed scientists and computer engineers who worked with an array of instruments to generate an unprecedented amount of data to take us to the next level. The endeavor is spearheaded by the Alfred Wegener Institute for Polar and Marine Research (AWI). The National Science Foundation funded the MOSAiC study, which is managed by the Alfred Wegener Institute.

The Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) was established at the end of 2018. MOSAiC, meaning marvelous, miraculous, magnificent, and marine, is working well, despite major setbacks. At one point during the mission, a strong Arctic storm hit the area, bringing with it massive ice pressure and cracking the ice beneath them; literally dividing the camp into two pieces.

During autumn semester, Demir was on a research cruise with the Ohio State University team, led by ECE Professor Joel Johnson. The team was working on a device to estimate sea ice thickness and operate an ultrawide band radiometer to generate a map of the Arctic’s sea ice coverage worldwide. Overall, the MOSAiC project reveals how broad the major and computer engineering (ECE) at the University of Iowa.

The Multidisciplinary Drifting Observatory for the Study of Arctic Climate mission, or MOSAiC, housed scientists and computer engineers who worked with an array of instruments to generate an unprecedented amount of data to take us to the next level. The endeavor is spearheaded by the Alfred Wegener Institute for Polar and Marine Research (AWI). The National Science Foundation funded the MOSAiC study, which is managed by the Alfred Wegener Institute.
Facial expressions don’t tell the whole story of human emotion

Interviewing with other people is something we’ve all done at some point or another. What we’re looking at is a visual cue for that. But there are much less studied visual cues, such as the back of the head. We think that it is a very interesting field.

The researchers analyzed the human emotions and compared those mental images. They performed the study at a public place, and their results indicated that different emotions based on a person’s facial expressions were almost all predictive of what they are thinking. For example, when a person is happy, they tend to smile. The researchers also noted that the back of the head is important in understanding what someone is thinking, and that it is a better predictor of what someone is thinking than facial expressions alone.

The researchers analyzed the human emotions and compared those mental images. They performed the study at a public place, and their results indicated that different emotions based on a person’s facial expressions were almost all predictive of what they are thinking. For example, when a person is happy, they tend to smile. The researchers also noted that the back of the head is important in understanding what someone is thinking, and that it is a better predictor of what someone is thinking than facial expressions alone.

The researchers analyzed the human emotions and compared those mental images. They performed the study at a public place, and their results indicated that different emotions based on a person’s facial expressions were almost all predictive of what they are thinking. For example, when a person is happy, they tend to smile. The researchers also noted that the back of the head is important in understanding what someone is thinking, and that it is a better predictor of what someone is thinking than facial expressions alone.

The researchers analyzed the human emotions and compared those mental images. They performed the study at a public place, and their results indicated that different emotions based on a person’s facial expressions were almost all predictive of what they are thinking. For example, when a person is happy, they tend to smile. The researchers also noted that the back of the head is important in understanding what someone is thinking, and that it is a better predictor of what someone is thinking than facial expressions alone.