ECE 6194.09 (Proposed): Group Studies Oxide Semiconductors: Materials and Devices

Course Description

We will study the fundamentals of c-axis-aligned crystalline indium-gallium-zinc oxide (CAAC-IGZO) semiconductors. Phase diagrams, crystal structures, fabrication process, defect levels, origin of main donors, and electrical conduction mechanisms will be discussed. CAAC-IGZO based field-effect transistors will be introduced. We will cover the basics of the emerging ultrawide band Ga2O3 and In2O3.

Prior Course Number: 694

Transcript Abbreviation: Grp Std Oxide Semi

Grading Plan: Letter Grade Course Deliveries: Classroom Course Levels: Graduate

Student Ranks: Masters, Doctoral

Course Offerings: Autumn Flex Scheduled Course: Never Course Frequency: Even Years Course Length: 14 Week

Credits: 3.0 **Repeatable:** No

Time Distribution: 3.0 hr Lec

Expected out-of-class hours per week: 6.0

Graded Component: Lecture Credit by Examination: No Admission Condition: No Off Compage Navor

Off Campus: Never

Campus Locations: Columbus **Prerequisites and Co-requisites:**

Exclusions: Cross-Listings:

Course Rationale: To prepare graduate students with basic understanding of the oxide semiconductors - a

research area ECE program currently focuses on.

The course is required for this unit's degrees, majors, and/or minors: No

The course is a GEC: No

The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code: 14.1001 **Subsidy Level:** Doctoral Course

Programs

Abbreviation	Description			
EE	Electrical Engineering			

Course Goals

Master the understanding of fundamentals of oxide semiconductors

Course Topics

Topic	Lec	Rec	Lab	Cli	IS	Sem	FE	Wor
Layered Compounds in the In2O3-Ga2O3-ZnO System and Related Compounds in the Ternary System- Syntheses and Phase Equilibrium Diagrams								
Layered Compounds in the In2O3-Ga2O3-ZnO System and Related Compounds in the Ternary System- Crystal Structures								
Layered Compounds in the In2O3-Ga2O3-ZnO System and Related Compounds in the Ternary System- Latest Topics in Crystalline IGZO								
Systematic View of CAAC-IGZO and Other Crystalline IGZO Thin Films- Fabrication Process								
Systematic View of CAAC-IGZO and Other Crystalline IGZO Thin Films- Structural Analysis								
Systematic View of CAAC-IGZO and Other Crystalline IGZO Thin Films- Deposition Mechanism								
Systematic View of CAAC-IGZO and Other Crystalline IGZO Thin Films- Structural Stability								
Systematic View of CAAC-IGZO and Other Crystalline IGZO Thin Films- Single-Crystal and Polycrystalline IGZO								
Fundamental Properties of IGZO- Band Structure								
Fundamental Properties of IGZO- Direct Levels in IGZO Bandgaps								
Fundamental Properties of IGZO- Origin of Main Donor								
Fundamental Properties of IGZO- Electrical Conduction Mechanisms								
CAAC-IGZO Field-Effect Transistor-Electrical Characteristics of CAAC-IGZO FET								
CAAC-IGZO Field-Effect Transistor- Comparison between CAAC-IGZO and Si FETs	3.0							
Semiconducting In2O3 and Ga2O3	6.0							

Grades

Aspect	Percent
Midterm Exam	30%
Homeworks and course project	30%
Final Exam	40%

Representative Textbooks and Other Course Materials

Title	Author
Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals	Noboru Kimizuka, Shunpei Yamazaki

ABET-EAC Criterion 3 Outcomes

Course Contribution		College Outcome
**	a	An ability to apply knowledge of mathematics, science, and engineering.
*	b	An ability to design and conduct experiments, as well as to analyze and interpret data.
	c	An ability to design a system, component, or process to meet desired needs.
	d	An ability to function on multi-disciplinary teams.
**	e	An ability to identify, formulate, and solve engineering problems.
	f	An understanding of professional and ethical responsibility.
**	g	An ability to communicate effectively.
	h	The broad education necessary to understand the impact of engineering solutions in a global and societal context.
	i	A recognition of the need for, and an ability to engage in life-long learning.
	j	A knowledge of contemporary issues.
	k	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Prepared by: Hongping Zhao