ECE 6541: Advanced Topics in Sustainable Energy and Power Systems

Course Description

Advanced topics in sustainable energy and power systems; basic issues and solutions to sustainable energy; the concept of smart grid; cyber control and security.

Transcript Abbreviation: Adv Sus En & Pwr Grading Plan: Letter Grade Course Deliveries: Classroom Course Levels: Undergrad, Graduate Student Ranks: Masters, Doctoral Course Offerings: Spring Flex Scheduled Course: Never **Course Frequency:** Every Year Course Length: 14 Week Credits: 3.0 Repeatable: No **Time Distribution:** 3.0 hr Lec Expected out-of-class hours per week: 6.0 Graded Component: Lecture Credit by Examination: No Admission Condition: No **Off Campus:** Never **Campus Locations:** Columbus Prerequisites and Co-requisites: 5025 (624) or 724 Exclusions: No topen to students with credit for 5541. **Cross-Listings:**

Course Rationale: Existing course wing renumbered to graduate-only level

The course is required for this unit's degrees, majors, and/or minors: No The course is a GEC: No The course is an elective (for this or other units) or is a service course for other units: Yes

Subject/CIP Code: 14.1001 Subsidy Level: Doctoral Course

Programs

Abbreviation	Description			
СрЕ	Computer Engineering			
EE	Electrical Engineering			

Course Goals

Be familiar with different means of integrating solar and wind energy into the electric power grid		
Master different techniques to control the power converters in solar and wind based electricity generation		
Be competent with the common issues for grid-tied inverters		
Be competent with the basic principles of energy conversion by different types of electric machines for wind energy		
Master Matlab/Simulink Power Systems Toolbox or other modern simulation tools for electric power		

Course Topics

Торіс	Lec	Rec	Lab	Cli	IS	Sem	FE	Wor
Energy composition in historical prospective	3.0							
Discussion of energy consumption and environmental impact	3.0							
Solutions to energy sustainability: fossil and green energy	3.0							
Modeling of micro-grids and distributed generation system	3.0							
Energy source and energy yield of photovoltaic modules	3.0							
Modeling of PV power plants with smart grid connection	3.0							
Control and grid-connection of PV power plants in mega- watts	3.0							
Energy source and energy yield of wind turbine generators (WTG)	3.0							
Doubly-fed induction machine and direct-driven PM machine WTGs	3.0							
Modeling of WTG power plants with smart grid connection	3.0							
Control and grid-connection of WTG farms in mega-watts	3.0							
Interfacing issues of renewable energy system to conventional power grid								
Energy storage systems	3.0							
Case studies on energy storage system in smart grid system	3.0							
Cyber control and cyber security issues/solutions to energy systems	3.0							

Representative Assignments

Homework	
Term project in computer simulations	

Grades

Aspect	Percent	
Exams - 1 during semester + final	50%	
homework	15%	
term project in computer simulation		
written paper(s) & possible in-class presentation		

Representative Textbooks and Other Course Materials

Title	Author
Renewable and Efficient Electric Power Systems	Gilbert Masters

ABET-EAC Criterion 3 Outcomes

Course Contribution		College Outcome
***	a	An ability to apply knowledge of mathematics, science, and engineering.
*	b	An ability to design and conduct experiments, as well as to analyze and interpret data.

Course Contribution		College Outcome
*	c	An ability to design a system, component, or process to meet desired needs.
	d	An ability to function on multi-disciplinary teams.
***	e	An ability to identify, formulate, and solve engineering problems.
*	f	An understanding of professional and ethical responsibility.
	g	An ability to communicate effectively.
**	h	The broad education necessary to understand the impact of engineering solutions in a global and societal context.
**	i	A recognition of the need for, and an ability to engage in life-long learning.
**	j	A knowledge of contemporary issues.
**	k	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Additional Notes or Comments

Corrected abbrevation, course description, prereqs, exclusions, CIP code. Broke up compound course topics to one topic per line

Delete exclusions an prior course numbers of 643, 743. 9/10/12 Add textbook 9/1/12

Renumber to 6541, expand course goals, and change prereq to 5025 per ABET review 5/14/14 BLA

Prepared by: Betty Lise Anderson